Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
p(a(x0), p(b(x1), p(a(x2), x3))) → p(x2, p(a(a(x0)), p(b(x1), x3)))
Q is empty.
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
p(a(x0), p(b(x1), p(a(x2), x3))) → p(x2, p(a(a(x0)), p(b(x1), x3)))
Q is empty.
Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:
P(a(x0), p(b(x1), p(a(x2), x3))) → P(a(a(x0)), p(b(x1), x3))
P(a(x0), p(b(x1), p(a(x2), x3))) → P(b(x1), x3)
P(a(x0), p(b(x1), p(a(x2), x3))) → P(x2, p(a(a(x0)), p(b(x1), x3)))
The TRS R consists of the following rules:
p(a(x0), p(b(x1), p(a(x2), x3))) → p(x2, p(a(a(x0)), p(b(x1), x3)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
P(a(x0), p(b(x1), p(a(x2), x3))) → P(a(a(x0)), p(b(x1), x3))
P(a(x0), p(b(x1), p(a(x2), x3))) → P(b(x1), x3)
P(a(x0), p(b(x1), p(a(x2), x3))) → P(x2, p(a(a(x0)), p(b(x1), x3)))
The TRS R consists of the following rules:
p(a(x0), p(b(x1), p(a(x2), x3))) → p(x2, p(a(a(x0)), p(b(x1), x3)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
Q DP problem:
The TRS P consists of the following rules:
P(a(x0), p(b(x1), p(a(x2), x3))) → P(a(a(x0)), p(b(x1), x3))
P(a(x0), p(b(x1), p(a(x2), x3))) → P(x2, p(a(a(x0)), p(b(x1), x3)))
The TRS R consists of the following rules:
p(a(x0), p(b(x1), p(a(x2), x3))) → p(x2, p(a(a(x0)), p(b(x1), x3)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:
P(a(x0), p(b(x1), p(a(x2), x3))) → P(a(a(x0)), p(b(x1), x3))
Used ordering: POLO with Polynomial interpretation [25]:
POL(P(x1, x2)) = 2·x1 + x2
POL(a(x1)) = x1
POL(b(x1)) = x1
POL(p(x1, x2)) = 1 + 2·x1 + x2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
P(a(x0), p(b(x1), p(a(x2), x3))) → P(x2, p(a(a(x0)), p(b(x1), x3)))
The TRS R consists of the following rules:
p(a(x0), p(b(x1), p(a(x2), x3))) → p(x2, p(a(a(x0)), p(b(x1), x3)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].
The following pairs can be oriented strictly and are deleted.
P(a(x0), p(b(x1), p(a(x2), x3))) → P(x2, p(a(a(x0)), p(b(x1), x3)))
The remaining pairs can at least be oriented weakly.
none
Used ordering: Matrix interpretation [3]:
Non-tuple symbols:
M( p(x1, x2) ) = | | + | | · | x1 | + | | · | x2 |
Tuple symbols:
M( P(x1, x2) ) = | 0 | + | | · | x1 | + | | · | x2 |
Matrix type:
We used a basic matrix type which is not further parametrizeable.
As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
The following usable rules [17] were oriented:
p(a(x0), p(b(x1), p(a(x2), x3))) → p(x2, p(a(a(x0)), p(b(x1), x3)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
Q DP problem:
P is empty.
The TRS R consists of the following rules:
p(a(x0), p(b(x1), p(a(x2), x3))) → p(x2, p(a(a(x0)), p(b(x1), x3)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.